(本题10分)集合,,求,,.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度. (1)求关于的函数关系式; (2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
如图,四棱锥中,底面是平行四边形,,平面,,,是的中点. (1)求证:平面; (2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.
已知椭圆C:(a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2. (1)求椭圆C的方程; (2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.
已知函数在(0,1)上单调递减. (1)求a的取值范围; (2)令,求在[1,2]上的最小值.
设等差数列{}的前n项和为S,且S3=2S2+4,a5=36. (1)求,Sn; (2)设,,求Tn