某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元,每个月的销售量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)在销量尽可能大的前提下,每件商品的售价定为多少元时,每个月的利润恰为2400元?
如图,C是射线 OE上的一动点,AB是过点 C的弦,直线DA与OE的交点为D,现有三个论断: ①DA是⊙O的切线;②DA=DC;③ OD⊥OB.请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,用“★★★”表示.并给出证明;我的命题是: .
如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离是1.7m,看旗杆顶部的仰角为;小红的眼睛与地面的距离是1.5m,看旗杆顶部的仰角为.两人相距23m且位于旗杆两侧(点在同一条直线上).请求出旗杆的高度.(参考数据:,,结果保留整数)
如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的位置关系并说明理由.
现有足够多的除颜色外都相同的球供你选用,还有一个最多只能装10个球的不透明袋子.(1)请你设计一个摸球游戏,使得从袋中任意摸出1个球,摸得红球的概率为,则应往袋中如何放球? .(2)若袋中装有2个红球和2个白球,搅匀后从袋中摸出一个球后,不放回,然后再摸出一个球,则请用列表或画树形图的方法列出所有等可能情况,并求出两次摸出的球都是红球的概率.
如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)