某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元,每个月的销售量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)在销量尽可能大的前提下,每件商品的售价定为多少元时,每个月的利润恰为2400元?
解方程:.
已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
计算:.
如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+x +c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。 (1)求二次函数的解析式; (2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式; (3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。 ①若直线l⊥BD,如图1所示,试求的值; ②若l为满足条件的任意直线。如图2所示,①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G。 (1)求证:AF⊥BE; (2)试探究线段AO、BO、GO的长度之间的数量关系; (3)若GO:CF=4:5,试确定E点的位置。