(本小题满分12分)如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.(Ⅰ)证明:平面BGM⊥平面BFC;(Ⅱ)求三棱锥F-BMC的体积V.
(本小题12分) 在△ABC中, 角A、B、C所对的边分别为a、b、c, 且tanA=, sinB=. (1)求tanC的值; (2)若△ABC最长的边为1, 求b.
(本小题满分l2分) 已知是非零实数,如果函数在区间上有零点,求的取值范围.
设函数,,当时,取得极值。 (Ⅰ)求的值; (Ⅱ)当时,函数与的图象有三个公共点,求的取值范围。
(本小题满分14分) 在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆E:与圆的一个交点到椭圆E的两焦点的距离之和为. (Ⅰ)求圆和椭圆E的方程; (Ⅱ)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
(本小题满分14分) 如图所示,棱长为2的正方体中,、分别为、的中点. (Ⅰ)求证://平面; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.