(本小题满分10分)选修4-5:不等式选讲已知且.证明:(Ⅰ);(Ⅱ).
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点. (Ⅰ)证明:CD⊥平面BEF; (Ⅱ)设, 求k的值.
四棱锥P—ABCD中,PA⊥面ABCD,PA=AB=BC=2,E为PA中点,过E作平行于底面的面EFGH分别与另外三条侧棱交于F,G,H,已知底面ABCD为直角梯形,AD//BC,AB⊥AD,∠BCD=135° (1)求异面直线AF,BG所成的角的大小; (2)设面APB与面CPD所成的锐二面角的大小为θ,求cosθ.
如图,已知长方体直线与平面所成的角为,垂直于,为的中点. (1)求异面直线与所成的角; (2)求平面与平面所成的二面角; (3)求点到平面的距离.
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点. (1)求证:PC⊥BD; (2)求证:AF//平面PEC; (3)求二面角P—EC—D的大小.
如图,在边长为的正方形中,点是的中点,点是的中点,将△AED,△DCF分别沿折起,使两点重合于. (1) 求证:; (2) 求二面角的正切值.