(本小题满分12分)已知数列的前n项和.(Ⅰ)求列数列的通项公式;(Ⅱ)设为数列的前n项和,求
(1)讨论函数()的图像与直线的交点个数. (2)求证:对任意的,不等式总成立.
已知直线的右焦点F,且交椭圆C于A,B两点.(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)对椭圆C,若直线L交y轴于点M,且,当m变化时,求的值.
甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为,且各人回答得正确与否相互之间没有影响.(1)若用表示甲队的总得分,求随机变量分布列和数学期望;(2)用表示事件“甲、乙两队总得分之和为”,用表示事件“甲队总得分大于乙队总得分”,求.
在城的西南方向上有一个观测站,在城的南偏东的方向上有一条笔直的公路,一辆汽车正沿着该公路上向城驶来.某一刻,在观测站处观测到汽车与处相距,在分钟后观测到汽车与处相距.若汽车速度为,求该汽车还需多长时间才能到达城?
如图,已知四棱锥的底面是正方形,侧棱底面,,是的中点.(1)证明平面;(2)求二面角的余弦值.