选修4﹣2:矩阵与变换已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=(),并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=(),=().(1)求矩阵M;(2)求M5α.
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
(Ⅱ)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列及数学期望。
设函数()的图象过点.(Ⅰ)求的解析式;(Ⅱ)已知,,求的值.
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程;(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.
如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (Ⅰ)证明:无论取何值,总有; (Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
已知圆C:,直线L:(1)求证:对m,直线L与圆C总有两个交点;(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.