已知矩阵M=[]的一个特征值是3,求直线x﹣2y﹣3=0在M作用下的直线方程.
如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.
如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.(1)证明:∠BAD=∠EAD;(2)求△ABD面积的最小值,并写出此时A点的坐标.
设抛物线的顶点在原点,准线方程为x=-.(1)求抛物线的标准方程;(2)若点P是抛物线上的动点,点P在y轴上的射影是Q,点M,试判断|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,请说明理由;(3)过抛物线焦点F作互相垂直的两直线分别交抛物线于A,C,B,D,求四边形ABCD面积的最小值.
已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为.(1)求椭圆的标准方程;(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.
已知函数f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.(1)求证:-2<<-1.(2)若x1,x2是方程f(x)=0的两个实根,求|x1-x2|的取值范围.