已知:如图,△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=4,求AD的长.
襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为: y = - 2 x + 140 ( 40 ≤ x < 60 ) - x + 80 ( 60 ≤ x ≤ 70 ) .
(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;
(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.
如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知 OA = OB , CA = CB , DE = 10 , DF = 6 .
(1)求证:①直线AB是⊙O的切线;② ∠ FDC = ∠ EDC ;
(2)求CD的长.
“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的 1 3 ,这时乙队加入,两队还需同时施工15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
如图,直线 y = ax + b 与反比例函数 y = m x ( x > 0 ) 的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.
(1)m= ,n= ;若 M ( x 1 , y 1 ), N ( x 2 , y 2 ) 是反比例函数图象上两点,且 0 < x 1 < x 2 ,则y1 y2(填“<”或“=”或“>”);
(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.
如图,在△ABC中,AD平分∠BAC,且 BD = CD , DE ⊥ AB 于点E, DF ⊥ AC 于点F.
(1)求证: AB = AC ;
(2)若 AD = 2 3 , ∠ DAC = 30 ° ,求AC的长.