邮递员骑车从邮局出发,先向西骑行2km达到A村,继续向西骑行3km达到B村,然后向东骑行9km达到C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示A、B、C三个村庄的位置.(2)C村离A村多远?(3)邮递员一共骑行了多少km?
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点 均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1), 点C的坐标为(-3,3)。 (1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形,并写出点A1的坐标; (2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形
解方程组:
(本小题满分14分)已知二次函数 (1)当时,函数值随的增大而减小,求的取值范围。 (2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线与轴交点的横坐标均为整数,求整数的值。
(本小题满分12分)如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A、B,交x轴于点C. (1)求m的取值范围; (2)若点A的坐标是(2,-4),且=,求m的值和一次函数的解析式.
(本小题满分12分)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). ⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.