(本题共13分,第(Ⅰ)问5分,第(Ⅱ)问8分)今年3月1日,重庆某中学50位学生参加了“北约联盟”的自主招生考试.这50位同学的数学成绩的频率分布直方图如图所示,其中成绩分组区间是:.(Ⅰ)求图中的值;(Ⅱ)从成绩不低于100分的学生中随机选取2人,该2人中成绩在110分以上(含110分)的人数记为,求的分布列和数学期望.
已知矩阵A=,B=,求矩阵A-1B.
设矩阵M=. (1)求矩阵M的逆矩阵M-1; (2)求矩阵M的特征值.
已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l′x+by=1. (1)求实数a,b的值; (2)若点P(x0,y0)在直线l上,且A=,求点P的坐标.
已知矩阵A=,向量β=.求向量α,使得A2α=β.
设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若1=2(其中O为坐标原点). (1)求椭圆M的方程; (2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.