如图1所示,在边长为12的正方形中,点在线段上,且,,作,分别交,于点,,作,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图2所示的三棱柱. (Ⅰ)求证:平面; (Ⅱ)求四棱锥的体积; (Ⅲ)求平面与平面所成锐二面角的余弦值.
已知曲线 C: y= x 2 2 , D为直线 y= - 1 2 上的动点,过 D作 C的两条切线,切点分别为 A, B.
(1)证明:直线 AB过定点:
(2)若以 E(0, 5 2 )为圆心的圆与直线 AB相切,且切点为线段 AB的中点,求四边形 ADBE的面积.
已知函数 f ( x ) = 2 x 3 - a x 2 + b .
(1)讨论 f ( x ) 的单调性;
(2)是否存在 a , b ,使得 f ( x ) 在区间 [ 0 , 1 ] 的最小值为 - 1 且最大值为1?若存在,求出 a , b 的所有值;若不存在,说明理由.
图1是由矩形 ADEB,Rt△ ABC和菱形 BFGC组成的一个平面图形,其中 AB=1, BE= BF=2,∠ FBC=60°,将其沿 AB, BC折起使得 BE与 BF重合,连结 DG,如图2.
(1)证明:图2中的 A, C, G, D四点共面,且平面 ABC⊥平面 BCGE;
(2)求图2中的二面角 B−CG−A的大小.
ΔABC 的内角的对边分别为 a , b , c ,已知 a sin A + C 2 = b sin A .
(1)求 B ;
(2)若 ΔABC 为锐角三角形,且 c = 1 ,求 ΔABC 面积的取值范围.
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成 A , B 两组,每组100只,其中 A 组小鼠给服甲离子溶液, B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记 C 为事件:"乙离子残留在体内的百分比不低于 5 . 5 ",根据直方图得到 P C 的估计值为 0 . 70 .
(1)求乙离子残留百分比直方图中 a , b 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).