(本小题满分14分)已知圆C的圆心在坐标原点,且与直线相切.(1)求直线被圆C所截得的弦AB的长;(2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程;(3)若与直线垂直的直线不过点R(1,-1),且与圆C交于不同的两点P,Q.若∠PRQ为钝角,求直线的纵截距的取值范围.
设函数.(Ⅰ)求的最小值;(Ⅱ)若对恒成立,求实数的取值范围.
(本小题满分12分) 已知数列的前项和为,且.数列满足(),且,.(Ⅰ)求数列,的通项公式;(Ⅱ)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;
(本小题满分12分)如图,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,, (1)求证:平面 (2)求证: (3)求四面体B-CDE的体积。
(本小题满分12分)某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组。(1)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;(3)实验结束后,第一次做实验的职员得到的实验数据为68,70,71,72,74,第二次做实验的职员得到的实验数据为69,70,70,72,74,请问哪位职员的实验更稳定?并说明理由。
(本小题满分12分)已知函数(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;(II)当a=2时,在的条件下,求的值.