(本小题满分14分)已知为的三个内角的对边,向量,,,,(1)求角的大小;(2)求的值.
近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.(1)试解释的实际意义,并建立关于的函数关系式;(2)当为多少平方米时,取得最小值?最小值是多少万元?
已知二次函数满足:①在时有极值;②图像过点,且在该点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间.
对于函数若存在,成立,则称为的不动点.已知(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.
已知函数的值域为集合A,函数的定义域为集合B.(1)求集合A,B;(2)若集合A,B满足,求实数a的取值范围.
某工厂在试验阶段大量生产一种零件,这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(1)求一个零件经过检测为合格品的概率是多少?(2)任意依次抽取该种零件个,设表示其中合格品的个数,求的分布列及数学期望.