(本小题满分12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(2)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价-成本)
(本小题满分12分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点。 (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。
(本小题满分12分) 已知数列满足,,设数列的前n项和为,令。 (Ⅰ)求数列的通项公式;(Ⅱ)判断的大小,并说明理由。
(本小题满分12分) 如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (Ⅰ)判定AE与PD是否垂直,并说明理由 (Ⅱ)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
(本小题满分12分) 为支持2010年广洲亚运会,某班拟选派4人为志愿者参与亚运会,经过初选确定5男4女共9名同学成为候选人,每位候选人当选志愿者的机会均等。 (1)求女生1人,男生3人当选时的概率? (2)设至少有几名男同学当选的概率为,当时,n的最小值?
(本小题满分10分) 在中,、、分别为角A、B、C的对边,且,,(其中).(Ⅰ)若时,求的值; (Ⅱ)若时,求边长的最小值及判定此时的形状。