(本题10分)已知:抛物线以点C为顶点且过点B,抛物线以点B为顶点且过点C,分别过点B、C作轴的平行线,交抛物线、于点A、D,E、F分别为AB、CD中点,连结EC、BF,且AE=BF.(1)如图1,①求证四边形ECFB为正方形;②求点A的坐标;(2)①如图2,若将抛物线“”改为“”,其他条件不变,求CD的长;②如图3,若将抛物线“”改为“”,其他条件不变,求的值;(3)若将抛物线“”改为抛物线“”,其他条件不变,请用含b2的代数式表示b1.
如图,已知A、B、C、D均在已知圆上,AD‖BC,CA平分∠BCD,∠ADC=,四边形ABCD周长为10.(1)求此圆的半径;(2)求圆中阴影部分的面积.
(5分)如图,已知⊙O直径为4cm,点M为弧AB的中点,弦MN、AB交于点P,APM=60°,求弦MN的长.
(5分)
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请求出球飞行的最大水平距离.(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(5分)抛物线的顶点坐标为(1,-4),图象又经过点(2,-3).求(1)抛物线的解析式.(2)求抛物线与一次函数y=3x+11的交点坐标.(3)求不等式>3x+11的解集(直接写出答案).