A、B、C是我方三个炮兵阵地,A在B正东6 km,C在B正北偏西30°,相距4 km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4 s后,B、C才同时发现这一信号,此信号的传播速度为1 km/s,A若炮击P地,求炮击的方位角.
递减的等差数列的前n项和为,若 (1)求的等差通项; (2)当n为多少时,取最大值,并求出其最大值; (3)求
在△ABC中,角A,B,C所对的边分别为a,b,c且满足c sinA="a" cosC. (1)求角C的大小; (2)求sinA –cos(B+C)的取值范围.
在等比数列 中,,,求和.
已知等差数列{an}的前n项和为Sn,且满足Sn=n2﹣n. (1)求an; (2)设数列{bn}满足bn+1=2bn﹣an且b1=4, (i)证明:数列{bn﹣2n}是等比数列,并求{bn}的通项; (ii)当n≥2时,比较bn﹣1•bn+1与bn2的大小.
在△ABC中,AB=4,AC=3,M,N分别是AB,AC的中点. (1)用,表示,; (2)若∠BAC=60°,求•的值; (3)若BN⊥CM,求cos∠BAC.