在△ABC中,已知点A(5,﹣2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.
已知抛物线y=x2上的两点A、B满足=l,l>0,其中点P坐标为(0,1),=+,O为坐标原点.(I) 求四边形OAMB的面积的最小值;(II) 求点M的轨迹方程.
设A,B分别是直线和上的两个动点,并且,动点P满足.记动点P的轨迹为C.(I)求轨迹C的方程;(II)若点D的坐标为(0,16),M、N是曲线C上的两个动点,且,求实数的取值范围.
已知A.B是椭圆上两点,O是坐标原点,定点,向量.在向量方向上的投影分别是m.n ,且7mn ,动点P满足 (Ⅰ)求点P的轨迹C的方程; (Ⅱ)设过点E的直线l与C交于两个不同的点M.N,求的取值范围。
已知点P与定点F的距离和它到定直线l:的距离之比是1 : 2.(1)求点P的轨迹C方程;(2)过点F的直线交曲线C于A, B两点, A, B在l上的射影分别为M, N. 求证AN与BM的公共点在x轴上.
已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足(1)求双曲线G的渐近线方程(2)求双曲线G的方程(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。