在△ABC中,a,b,c分别是内角A,B,C的对边,.(1)若,求△ABC的面积S△ABC;(2)若是边中点,且,求边的长.
在三棱拄中,侧面,已知,,. (Ⅰ)求证:平面; (Ⅱ)试在棱(不包含端点)上确定一点的位置,使得; (Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.
某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为饮料,另外2杯为饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为及格.假设此人对和两种饮料没有鉴别能力. (Ⅰ)求此人被评为优秀的概率; (Ⅱ)求此人被评为良好及以上的概率.
在中,角所对的边分别为且满足. (I)求角的大小; (II)求的最大值,并求取得最大值时角的大小.
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.
已知正项数列的前项和为,是与的等比中项. (1)求证:数列是等差数列; (2)若,且,求数列的通项公式; (3)在(2)的条件下,若,求数列的前项和.