已知函数f(x)=x3+ax2-a2x+2,a∈R.(1)若a<0时,试求函数y=f(x)的单调递减区间;(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4;(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形试求正实数a的取值范围.
已知为定义在上的奇函数,且当时, (1)求出函数的解析式; (2)当时,求出的最小值和最大值.
已知集合 (1)若,求的取值范围; (2),求的取值范围.
已知函数对任意实数都有,且,,当时,。 (1)判断的奇偶性; (2)判断在[0,+∞)上的单调性,并给出证明; (3)若且,求的取值范围。
销售甲、乙两种商品所得利润分别是万元,它们与投入资金万元的关系分别为,,(其中m,a, b都为常数),函数对应的曲线C1、C2如图所示. (1)求函数的解析式; (2)若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.
已知扇形AOB的周长为8. (1)若这个扇形的面积为3,求其圆心角的大小。 (2)求该扇形的面积取得最大时,圆心角的大小和弦长AB。