已知函数f(x)=x3+ax2-a2x+2,a∈R.(1)若a<0时,试求函数y=f(x)的单调递减区间;(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4;(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形试求正实数a的取值范围.
已知函数. (Ⅰ)求使不等式成立的的取值范围; (Ⅱ),,求实数的取值范围.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点(-2,-4)的直线的参数方程为(为参数),直线与曲线相交于两点. (Ⅰ)写出曲线的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.
如图,直线为圆的切线,切点为,直径,连接交于点. (Ⅰ)证明:; (Ⅱ)求证:.
设函数 (1) 当时,求的单调区间; (2) 若当时,恒成立,求的取值范围.
设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为. (1) 求椭圆方程. (2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.