某校高三有甲、乙两个班,在某次数学测试中,每班各抽取5份试卷,所抽取的平均得分相等(测试满分为100分),成绩统计用茎叶图表示如下:
(1)求;(2)学校从甲班的5份试卷中任取两份作进一步分析,在抽取的两份试卷中,求至多有一份得分在之间的概率.
一个口袋中装有大小相同的个红球(且)和个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。(Ⅰ)试用表示一次摸奖中奖的概率;(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求的最大值.(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的个红球全部作如下标记:记上号的有个(),其余的红球记上号,现从袋中任取一球。表示所取球的标号,求的分布列、期望和方差.
已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.
袋子和中装有若干个均匀的红球和白球,从中摸一个红球的概率是,从中摸出一个红球的概率为.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球则停止.① 求恰好摸5次停止的概率;② 记5次之内(含5次)摸到红球的次数为,求随机变量的分布列及数学期望.⑵若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,求的值.
将长为1 的棒任意地折成三段,求三段的长度都不超过的概率.