如图所示,是圆O的一条弦,,垂足为,交圆O于点,点在圆O上.(1)若,求的度数;(2)若AC=,CD=1,求圆O的半径.
如图13,已知AD∥BC,AD=CB,求证AB=CD。
已知,如图12,AB=AC,DB=DC,求证AD平分∠BAC。
若点M(3a-b,5)与点N(9,2a+3b)关于x轴对称,求a、b的值。
如图11,△ABC三个顶点的坐标分别为A(-3,-1)、B(-4,-3)C(-2,-5)在图中作出△ABC关于x轴对称的图形;在图中作出△ABC关于y轴对称的图形;求S△ABC。
如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点A开始沿AO以cm/s的速度向点O移动,移动时间为t s(0<t<6).(1)求∠OAB的度数. (2分)(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时, PM与⊙O‘相切?(3分)(3)动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动. 如果P、Q、R分别从A、A、B同时移动,当t="4" s时,试说明四边形BRPQ为菱形;(3分)(4)在(3)的条件下,以R为圆心,r为半径作⊙R,当r不断变化时,⊙R与菱形BRPQ各边的交点个数将发生变化,随当交点个数发生变化时,请直接写出r的对应值或取值范围.(4分)