如图,四边形ABCD是平行四边形AD=12,AB=13,DB⊥AD,求BC,CD及OB的长.
(本小题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)直线BC上存不存在除点E以外的点P,使△AOP也是等腰三角形,如果不存在,说明理由;如果存在,直接写出P点的坐标.
(本小题满分12分)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O. (1)当△DEF旋转至如图②位置,点B(E),C、D在同一直线上时,∠AFD与∠DCA的数量关系是. (2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由. (3)在图③中,连接BO、AD,探索BO与AD之间有怎样的位置关系,并证明.
(本小题满分10分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△BOC的面积是1. (1)求m、n的值; (2)求三角形AOC的面积.
(本小题满分10分)如图☉O中,半径OD⊥弦AB于点C,连接AO并延长交☉O于点E,连接EC,若AB=8,CD=2,求EC的长度.
(本小题满分10分)如图所示,一次函数()的图象与反比例函数()的图象交于M,N两点. (1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.