如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=(1)求证:PC⊥BC(2)求点A到平面PBC的距离
某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
在△中,角,,的对边分别是,,,且,,△的面积为.(Ⅰ)求边的长;(Ⅱ)求的值.
已知函数.(1)对任意实数,恒有,证明;(2)若是方程的两个实根,是锐角三角形的两个内角,求证:。
已知函数为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间; (2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
已知向量.(1)若,且,求角的值;(2)若,且,求的值.