在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,射线与各有一个交点.当时,这两个交点间的距离为2,当时,这两个交点重合.(1)分别说明是什么曲线,并求出与的值;(2)设当时,与的交点分别为,当时,与的交点为,求四边形的面积.
为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表。请你根据频率分布表解答下列问题:(1)填充频率分布表中的空格。(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.
下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
(1)求线性回归方程所表示的直线必经过的点;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;并预测生产1000吨甲产品的生产能耗多少吨标准煤?(参考:)
(本小题满分14分)已知数列中,,,2,3,…(I)求证数列是等差数列;(II)试比较的大小;(III)求正整数,使得对于任意的正整数恒成立。
(本小题满分14分)设函数。(I)求函数的单调区间、极大值和极小值。(II)若时,恒有,求实数的取值范围。
(本小题满分13分)已知等差数列的前项和为,已知。(I)求通项;(II)记数列的前项和为,数列的前项和为,求证:。