已知在正项数列{an}中,Sn表示前n项和且2=an+1,数列的前n项和,(1)求;(2)是否存在最大的整数t,使得对任意的正整数n均有总成立?若存在,求出t;若不存在,请说明理由,
已知等差数列的前n项和为,且, (1)求; (2)求的最大值.
设的三边长分别为已知. (1)求A; (2)求的面积S.
已知抛物线:,过点的直线交抛物线于,两点.(1)若抛物线的焦点为,求该抛物线的方程;(2)已知过点,分别作抛物线的切线,,交于点,以线段为直径的圆经过点,求实数的值.
已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.
设数列的前项和为,已知,,.(1)设,求证:数列是等比数列;(2)若数列是单调递增数列,求实数的取值范围.