如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2,验证了完全平方公式;即:多项式 a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.问题解决:(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2.(画图说明,并写出其结果)(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)
已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.
(A类)(1)已知x+y=1,求x2+xy+y2的值;(2)已知10a=2,10b=3,求10a+b的值.(B类)(1)已知x2﹣3x+1=0,求x2+的值.(2)已知10a=20,102b=5,求10a﹣2b的值.(C类)若x+y=2,x2+y2=4,求x2003+y2003的值.
求代数式5x2﹣4xy+y2+6x+25的最小值.
已知(2﹣a)(3﹣a)=5,试求(a﹣2)2+(3﹣a)2的值.