如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年 级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅 不完整的统计图.已经知A、B两组发言人数直方图高度比为1∶5. 请结合图中相关的数据回答下列问题: (1)A组的人数是多少?本次调查的样本容量是多少? (2)求出C组的人数并补全直方图. (3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶 点都在格点上,建立平面直角坐标系. (1)点A的坐标为,点C的坐标为. (2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为. (3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出△A2B2C2,并写出点A2的坐标:.
(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与 y轴交于点C. (1)求抛物线的解析式; (2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标; (3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.
(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过 点D作EF⊥AC于点E,交AB的延长线于点F. (1)求证:EF是⊙O的切线; (2)当∠BAC=60º时,DE与DF有何数量关系?请说明理由; (3)当AB=5,BC=6时,求tan∠BAC的值.