已知函数(1)令,求关于的函数关系式及的取值范围;(2)求函数的值域,并求函数取得最小值时的的值.
某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段,…后画出如下频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数); (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.
设数列。 (I) 把算法流程图补充完整: ①处的语句应为; ②处的语句应为; (Ⅱ) 虚框内的逻辑结构为; (Ⅲ) 根据流程图写出程序:
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假. (1)矩形的对角线相等且互相平分; (2)正偶数不是质数.
已知函数()(为自然对数的底数) (1)求的极值 (2)对于数列, () ①证明: ②考察关于正整数的方程是否有解,并说明理由
已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且 (1)求圆和抛物线C的方程; (2)若为抛物线C上的动点,求的最小值; (3)过上的动点Q向圆作切线,切点为S,T, 求证:直线ST恒过一个定点,并求该定点的坐标.