已知函数.(1)求函数的最小正周期;(2)已知内角的对边分别为,且,若向量与共线,求的值.
已知向量记. (1)若,求的值; (2)在△ABC中,角A、B、C的对边分别是、、,且满足,若,试判断△ABC的形状.
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为 (1)求曲线C的方程。 (2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
已知命题:方程表示焦点在轴上的双曲线。命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
已知椭圆的中心在坐标原点O,左顶点,离心率,为右焦点,过焦点的直线交椭圆于、两点(不同于点). (1)求椭圆的方程; (2)当的面积时,求直线PQ的方程; (3)求的范围.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点. (1)求证://平面; (2)求与平面BDE所成角的余弦值; (3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。