(本小题12分)我国是水资源匮乏的国家为鼓励节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为吨,应交水费为.(1)求、、的值;(2)试求出函数的解析式.
设函数 (1)求的单调递增区间; (2)当时,求的值域。
定义:若对定义域内的任意两个,均有成立,则称函数是上的“平缓函数”。 1.判断和的单调性并证明; 2.判断和是否为R上的“平缓函数”,并说明理由; 3.若数列中,总有。
已知函数f(x)=xm+ax的导函数f′(x)=2x+1,,点An(n, Sn)在函数y="f(x)" (n∈N*)的图像上 , (1)求证:数列为等差数列;(2)设,求数列的前项和
设集合; (1)若,求的取值范围; (2)求函数的最值
在中,分别是角的对边,向量,,且. 1.求角的大小; 设,且的最小正周期为,求在区间上的单调增区间及所有对称轴方程