已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望
已知函数. (1) 判断的奇偶性,并加以证明; (2) 设,若方程有实根,求的取值范围; (3)是否存在实数m使得为常数?若存在,求出m的值;若不存在,说明理由.
已知定义在R上的函数, 定义:. (1)若满足,则称为函数的不动点.若函数有两个不动点,求b,c满足的关系式; (2)若对任意的,都使得,用反证法证明:.
某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=.假定该产品生产销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产量x应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少元?
已知集合. (1)当时,求; (2)求使的实数的取值范围.
已知z为复数,和均为实数,其中是虚数单位. (1)求复数z; (2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.