如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点. (1)求证:MN∥平面AA1C1C; (2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知抛物线的焦点为是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于.过作垂直于轴,垂足为,的中点为.(1) 求抛物线方程;(2) 过作,垂足为,求点的坐标;(3) 以为圆心,为半径作圆.当是轴上一动点时,讨论直线与圆的位置关系.
已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.
设抛物线的准线与轴的交点为,过点作直线交抛物线于两点.若直线的斜率依次取时,线段的垂直平分线与对称轴的交点依次为,当时,求的值.
设抛物线的准线与轴的交点为,过点作直线交抛物线于两点,若线段的垂直平分线交对称轴于,求证:;
设抛物线的准线与轴的交点为,过点作直线交抛物线于两点.求线段中点的轨迹方程;