已知曲线C的参数方程是 ( θ为参数 ),以直角坐标系xoy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+ sinθ) = 4(Ⅰ)试求曲线C上任意点M到直线l的距离的最大值;(Ⅱ)设P是l上的一点,射线OP交曲线C于R点,又点Q在射线OP上,且满足|OP|·|OQ|=|OR|2,当点P在直线l上移动时,试求动点Q的轨迹.
(本小题满分14分)已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分13分)某公司有价值万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值万元与技术改造投入万元之间的关系满足:①与和的乘积成正比;②时,;③,其中为常数,且.(Ⅰ)设,求表达式,并求的定义域;(Ⅱ)求出附加值的最大值,并求出此时的技术改造投入.
(本小题满分13分)已知,在水平平面上有一长方体绕旋转得到如图所示的几何体.(Ⅰ)证明:平面平面;(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面所成的角为,长方体的最高点离平面的距离为,请直接写出的一个表达式,并注明定义域.
(本小题满分13分)椭圆:与抛物线:的一个交点为M,抛物线在点M处的切线过椭圆的右焦点F.(Ⅰ)若M,求和的标准方程;(II)求椭圆离心率的取值范围.
(本小题满分13分)随机变量X的分布列如下表如示,若数列是以为首项,以为公比的等比数列,则称随机变量X服从等比分布,记为Q(,).现随机变量X∽Q(,2).
(Ⅰ)求n 的值并求随机变量X的数学期望EX;(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.