中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)
如图,已知等腰三角形△ABC,其中AB=AC,∠CAB=40°,(1)作底角∠ABC的平分线BD,交AC于点D(要求用尺规作图,不用写作法,但要保留作图痕迹)(2)请计算∠BDC的度数。
计算:。
如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。
乘法公式的探究及应用:探究问题:如图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2,如图所示。(1)则图1长方形纸条的面积可表示为________________(写成多项式乘法的形式)。(2)拼成的图2中阴影部分面积可表示为________________(写成两数平方差的形式)。(3)比较两图的阴影部分面积,可以得到乘法公式____________。结论运用:(4)应用所得的公式计算:=____________________。=___________________。拓展运用:(5)计算:。
如图,在四边形ABCD中,∠A=104°,∠ABC=76°,BD⊥CD于点D,EF⊥CD于点F,你能说明∠1=∠2吗?试一试。