某中学社团部志愿者协会共有6名男同学,4名女同学. 在这10名同学中,3名同学来自动漫社,其余7名同学来自摄影社、话剧社等其他互不相同的七个社团. 现从这10名同学中随机选取3名同学,到社区参加志愿活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同社团的概率;(Ⅱ)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
如图所示, 为圆的切线, 为切点,,的角平分线与和圆分别交于点和.(1)求证 (2)求的值.
已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)设,证明:对任意,总存在,使得.
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.
如图,四边形与均为菱形,设与相交于点,若,且.(1)求证:;(2)求二面角的余弦值.
已知数列、满足,且,其中为数列的前项和,又,对任意都成立。(1)求数列、的通项公式;(2)求数列的前项和