已知函数对一切、都有:,并且当时,.(1)判定并证明函数在上的单调性;(2)若,求不等式的解集.
(12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC (Ⅰ)求证:AB1⊥平面A1BD; (Ⅱ)求二面角A-A1D-B的余弦值; (Ⅲ)求点C到平面A1BD的距离.
(12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点. (Ⅰ)求证:命题“如果直线过点T(3,0),那么=3”是真命题; (Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
(12分)如图,已知三棱锥的侧棱两两垂直,且,,是的中点. (Ⅰ)求异面直线与所成角的余弦值; (Ⅱ)BE和平面所成角的正弦值.
(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD. (Ⅰ)当P在圆上运动时,求点M的轨迹C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.
(12分)已知命题p:不等式的解集为R,命题q:是R上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.