已知为全集, ,,求:(1); (2).
(本小题满分12分)椭圆过点,其左、右焦点分别为,离心率,是直线上的两个动点,且.(1)求椭圆的方程; (2)求的最小值;(3)以为直径的圆是否过定点?请证明你的结论.
.某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数与时间x(小时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合污染指数,并记作.(1)令,求t的取值范围;(2)求函数;(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的综合污染是否超标?请说明理由。
如右图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求直线BF和平面BCE所成角的正弦值
已知函数, 其中,相邻两对称轴间的距离不小于(1)求的取值范围; (2)在 的面积.
(本题12分)在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天10:00观察到该航船在A处,此时测得∠ADC=30°,3分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,求船的速度是多少千米/分钟.