给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.
如图,在多面体中,平面,,且是边长为的等边三角形,,与平面所成角的正弦值为. (Ⅰ)若是线段的中点,证明:面; (Ⅱ)求多面体的体积.
已知且,函数,,记 (Ⅰ)求函数的定义域及其零点; (Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.
在中,分别是角的对边,为的面积,若,且. (Ⅰ)求的值; (Ⅱ)求的最大值.
选修:不等式选讲 设. (Ⅰ)求函数的定义域; (Ⅱ)若存在实数满足,试求实数的取值范围.
选修:坐标系与参数方程 在平面直角坐标系中,直线经过点,其倾斜角是,以原点为极点,以轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程是. (Ⅰ)若直线和曲线有公共点,求倾斜角的取值范围; (Ⅱ)设为曲线任意一点,求的取值范围.