如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
已知数列满足且. (Ⅰ)求的值; (Ⅱ)是否存在一个实数,使得且为等差数列?若存在,求出的值; 如不存在,请说明理由; (Ⅲ)求数列的前项和.
已知函数. (Ⅰ)求函数的最小正周期、最大值及取最大值时自变量的取值集合; (Ⅱ)在中,角,,的对边分别是,,;若,,成等比数列,且, 求的值.
已知函数(). (Ⅰ)若函数在定义域内单调递增,求实数的取值范围; (Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围; (Ⅲ)设各项为正数的数列满足,(),求证:.
已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足. (Ⅰ)求数列,的通项公式; (Ⅱ)如果,设数列的前项和为,是否存在正整数,使得成立,若存在, 求出的最小值,若不存在,说明理由.
已知椭圆上的点到左右两焦点的距离之和为 ,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (ⅰ)若轴上一点满足,求直线斜率的值; (ⅱ)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方 程;若不存在,说明理由.