已知(1)求的最小正周期;(2)求单调区间;(3)求图象的对称轴,对称中心.m]
已知函数是函数的导函数,其中实数a是不等1的常数。 (1)设,讨论函数在区间内零点的个数; (2)求证:当内恒成立。
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,点M 是棱PC的中点,平面ABCD,AC、BD交于点O。 (1)求证:,求证:AM平面PBD; (2)若二面角M—AB—D的余弦值等于,求PA的长
袋子中有相同大小的红球3个及白球4个,现从中随机取球。 (1)取球3次,每次取后放回,求取到红球至少2次的概率; (2)现从袋子中逐个不放回的取球,若取到红球则继续取球,取到白球则停止取球,求取球次数的分布列与均值。
已知函数 (1)将的解析基本功化成的形式,并求函数图象离y轴最近的对称轴的方程; (2)求函数内的值域
:已知点列满足:,其中,又已知,. (1)若,求的表达式; (2)已知点B,记,且成立,试求a的取值范围; (3)设(2)中的数列的前n项和为,试求:。