已知数列满足:,(1)求、;(2)猜想的通项公式,并用数学归纳法证明.(3)求证: ()
已知向量,,函数.(1)求函数的最小正周期和单调递增区间;(2)如果△ABC的三边所对的角分别为、、,且满足,求的值.
已知数列的前项和为,常数,且对一切正整数都成立。(Ⅰ)求数列的通项公式;(Ⅱ)设,,求证: <4.
在△ABC中,a, b, c分别为内角A, B, C的对边,且满足2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小; (Ⅱ)求的最大值.
已知数列是等差数列,其前n项和为,,(1)求数列的通项公式;(2)设p、q是正整数,且p≠q.证明:.
已知二次函数f(x)=(1)若f(0)>0,求实数p的取值范围(2)在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围。