设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点. (1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.
已知圆C:直线 (1)证明:不论取何实数,直线与圆C恒相交; (2)求直线被圆C所截得的弦长的最小值及此时直线的方程.
已知圆, (Ⅰ)若直线过定点(1,0),且与圆相切,求的方程; (Ⅱ) 若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9. (1)判断两圆的位置关系; (2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
已知点和求过点且与的距离相等的直线方程.