解不等式组:,且写出使不等式组成立的所有整数.
(本小题满分12分) 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M从点C出发,以每秒1cm的速度沿CA向终点A移动,同时动点P从点A出发,以每秒2cm的速度沿AB向终点B移动,连接PM,设移动时间为t(s)(0<t<2.5). (1)当AP=AM时,求t的值. (2)设四边形BPMC的面积为(cm²),求y与t之间的函数关系式; (3)是否存在某一时刻t,使四边形BPMC的面积是Rt△ABC面积的?若存在,求出相应t的值,若不存在,说明理由; (4)是否存在某一时刻t,使以M,P,A为顶点的三角形与△ABC相似?若存在,求出相应t的值;若不存在,说明理由.
(本小题满分10分)方法介绍:同学们,生活中的很多实际问题,我们往往抽象成数学问题,然后通过数形结合建立数学模型的方式来解决.例如:学校举办足球赛,共有五个球队参加比赛,每个队都要和其他各队比赛一场,问该学校一共要安排多少场比赛?这是一个实际问题,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),如图①所示,其中每个点各代表一个足球队,两个队之间比赛一场就用一条线段把他们连起来,其中连接线段的条数就是安排比赛的场数.这样模型就建立起来了,如何解决这个模型呢?由于每个队都要与其他各队比赛一场,即每个点都要与另外4点连接一条线段,这样5个点应该有5×4=20条线段,而每两个点之间的线段都重复计算了一次,实际只有10条线段,所以学校一共要安排10场比赛.学以致用:(1)根据图②回答:如果有6个班级的足球队参加比赛,学校一共要安排 场比赛;(2)根据规律,如果有n个班级的足球队参加比赛,学校一共要安排 场比赛.问题解决:(1)小明今年参加了学校新组建的合唱队,老师让所有人每两人相互握手,认识彼此(每两人之间不重复握手).小明发现所有人握手次数总和为91次,那么合唱队有多少人?(2)A、B、C、D、E、F六人参加一次会议,见面时他们相互握手问好,每两人之间不重复握手,如图③,已知A已经握了5次,B已经握了4次,C已经握了3次,D已经握了2次,E已经握了1次,请利用图③分析F已经和哪些人握手了.问题拓展:根据上述模型的建立和问题的解决,请你提出一个问题,并进行解答.
(本小题满分10分)利达经销店为某工厂代销一种建筑材料.当每千克售价为260元时,月销售量为45千克.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每千克售价下降10元时,月销售量就会增加5千克.综合考虑各种因素,每售出一千克建筑材料共需支付厂家及其它费用100元.设每千克材料售价为x(元),该经销店的月利润为y(元).(1)当每千克售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每千克多少元?
(本小题满分8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)判断四边形OCED的形状,并进行证明;(2)点E是否在AB的垂直平分线上?若在,请进行证明;若不在,请说明理由.
(本小题满分8分)如图所示,反比例函数y1的图象经过点A(3,2),解答下列问题:(1)求y1的函数关系式;(2)过y1上任意一点B向x轴,y轴作垂线,交两坐标轴于C,D两点,求矩形OCBD的面积;(3)过点A的一次函数y2与反比例函数y1的另一个交点E的横坐标为-1,求y2的关系式;(4)通过图象回答当x取何值时,y1>y2;