如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D。(1)求证:CE2 =" CD" · CB;(2)若AB =" BC" = 2,求CE和CD的长。
(本小题满分14分)已知函数的导函数.(1)若,不等式恒成立,求a的取值范围;(2)解关于x的方程;(3)设函数,求时的最小值.
(本小题满分13分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.
(本小题满分12分)如图,四棱锥中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2.(1)求三棱锥的外接球的体积;(2)求二面角与二面角的正弦值之比.
已知数列的前项和为,向量,,满足条件,且.(1)求数列的通项公式;(2)设函数,数列满足条件,①求数列的通项公式;②设,求数列的前和.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.