如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
(1)当时,求代数式的值. (2) 已知的值为7 , 求代数式的值
列式并计算:(1)﹣1减去的差乘以﹣7的倒数的积;(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?
将0,,,这四个数在数轴上表示出来.并用“<”号连接起来.
已知,如图,抛物线>0)与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
小明在课外学习时遇到这样一个问题:定义:如果二次函数与满足,,,则称这两个函数互为“旋转函数”.求函数的“旋转函数”.小明是这样思考的:由函数可知,,,,根据,,,求出,,,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数的“旋转函数”;(2)若函数与互为“旋转函数”,求的值;(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”。