已知.(1)求函数的最小正周期.(2)求函数在闭区间上的最小值并求当取最小值时,的取值集合.
某企业进行技术改造,有两种方案可供选择:甲方案--- 一次性贷款10万元,第一年可获利1万元,以后每年比前一年增加30%的利润 ;乙方案---每年贷款1万元,第一年可获利1万元,以后每年却比前一年增加利润5千元,两种方案使用期都是10年,到期一次性还本付息,若银行贷款利息均按年息10%的复利计算 ,试比较两种方案的优劣(计算时精确到千元,并取1.1
数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.
设集合,若,求实数a的范围.
已知函数满足,且对于任意, 恒有成立.(1)求实数的值; (2)解不等式.
设数列 a n 的前 n 项和为 S n ,已知 b a n - 2 n = b - 1 S n . (1)证明:当 b = 2 时, a n - n . 2 n - 1 是等比数列; (2)求 a n 的通项公式.