用指定的方法解下列方程:(1)x2+4x﹣1=0(用配方法);(2)2x2﹣8x+3=0(用公式法).
如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F. (1)求证:AE=BF; (2)如图2,连接DF、CE,探究线段DF与CE的关系并证明; (3)图1中,若AB=4,BG=3,求EF长.
将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F, (1)求证:四边形AECF为菱形; (2)若AB=4,BC=8,求菱形的边长; (3)在(2)的条件下折痕EF的长.
已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0). (1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围; (2)当S=9时,求点P的坐标; (3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.
某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价). (1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式; (2)求总利润w关于x的函数关系式; (3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润. 饮料 果汁饮料 碳酸饮料 进价(元/箱) 51 36 售价(元/箱) 61 43
已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.