如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的三个顶点的坐标分别是:A(2,2),B(1,0),C(3,1). (1)画出△ABC关于x轴对称的△A’B’C’,并求出点A’、B’、C’的坐标.
y
(2)在坐标平面内是否存在点D,使得△COD为等腰三角形?若存在,直接写出点D的坐标(找出满足条件的两个点即可),若不存在,请说明理由.
(满分8分)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上. (1)求证:△ADE≌△BGF; (2)若正方形DEFG的面积为16,求AC的长.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒. (1)求线段CD的长; (2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得 S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由. (3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.
如图,是⊙的直径,点是⊙上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,弦平分∠,交于点,连接. (1)求证:平分∠; (2)求证:PC=PF; (3)若,AB=14,求线段的长
如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D. (1)求二次函数的解析式; (2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围; (3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.
为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: 图1图2 (1)本次抽样测试的学生人数是,其中不及格人数占样本人数的百分比为; (2)图1中∠α的度数是,并把图2条形统计图补充完整; (3)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.