如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的三个顶点的坐标分别是:A(2,2),B(1,0),C(3,1). (1)画出△ABC关于x轴对称的△A’B’C’,并求出点A’、B’、C’的坐标.
y
(2)在坐标平面内是否存在点D,使得△COD为等腰三角形?若存在,直接写出点D的坐标(找出满足条件的两个点即可),若不存在,请说明理由.
如图,△内接于,∠=的直径,,求的长.
已知下列n(n为正整数)个关于x的一元二次方程: (1)请解上述一元二次方程; (2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2 000万元,2010年投入的资金是2 420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同. (1)求该市对市区绿化工程投入资金的年平均增长率; (2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
关于的方程有两个不相等的实数根. (1)求的取值范围. (2)是否存在实数,使方程的两个实数根的倒数和等于0?若存在,求出的值;若不存在,说明理由.
某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?