设函数.(1)解不等式;(2)已知关于x的不等式恒成立,求实数的取值范围.
(本小题满分14分) 已知函数,为实数)有极值,且在处的切线与直线平行. (1)求实数a的取值范围; (2)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(本小题满分14分)为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.
(1) 用的代数式表示 (2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:)
(本小题满分14分) 如图,四边形为矩形,且平面,为上的点,且平面 (1)设点为线段的中点,点为线段的中点,求证:∥平面 (2)求证 (3)当时,求三棱锥的体积。
(本小题满分12分) 先阅读以下不等式的证明,再类比解决后面的问题 若,则. 证明:构造二次函数 将展开得:对一切实数恒有,且抛物线的开口向上,. (Ⅰ)类比猜想: 若,则 . (在横线上填写你的猜想结论) (Ⅱ)证明你的猜想结论.
(本小题满分12分) 在中,已知,且. (Ⅰ)求的大小。 (Ⅱ)证明是等边三角形k