在中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当 时,求AE的长;(2)如图2,当点E、F在边AB上时,求(3)联结CE,当求的值.
如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°. (1)直接写出直线AB的解析式; (2)求点D的坐标; (3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.
在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
如图,直线与轴交于点,与轴交于点,已知二次函数的图象经过点、和点. (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为,求四边形的面积; (3)有两动点、同时从点出发,其中点以每秒个单位长度的速度沿折线按→→的路线运动,点以每秒个单位长度的速度沿折线按→→的路线运动,当、两点相遇时,它们都停止运动.设、同时从点出发秒时,的面积为S . ①请问、两点在运动过程中,是否存在∥,若存在,请求出此时的值;若不存在,请说明理由; ②请求出S关于的函数关系式,并写出自变量的取值范围; ③设是②中函数S的最大值,那么= .
如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D (1)求a,b及的值 (2)设点P的横坐标为 ①用含的代数式表示线段PD的长,并求出线段PD长的最大值; ②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1)求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。 (注:抛物线的对称轴为)