某公司要把240吨白砂糖运往某市的、两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往地的运费为:大车630元/辆,小车420元/辆;运往地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往地,其中调往地的大车有辆,其余货车前往地,若设总运费为,求W与的关系式(用含有的代数式表示W).
(25分)已知G是△ABC内任一点,BG、CG分别交AC、AB于点E、F. 求使不等式S△BGF·S△CGE≤kS2△ABC恒成立的k的最小值.
已知△ABC中,∠A>∠B>∠C,且∠A=2∠B.若三角形的三边长为整数,面积也为整数,求△ABC面积的最小值.
(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?
(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证: (1)EP/DE=PD/DC;(2)△EPD是等腰三角形.
实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.